【Arduino101教程】神经元与IMU动作识别-Arduino中文社区 - Powered by Discuz!

Arduino中文社区

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 15966|回复: 12

【Arduino101教程】神经元与IMU动作识别

[复制链接]
发表于 2017-3-12 17:36 | 显示全部楼层 |阅读模式
什么是机器学习
机器学习领域的先驱ArthurSamuel,在其论文《Some Studies in Machine Learning Using the Game of Checkers》中,将机器学习非正式定义为:“在不直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域。”例如要让Genuino 101判断其自身姿态是正面朝上,还是朝下时。常规做法是,计算出姿态角,并判断其是否在某一区间中;而使用机器学习,可以通过多次将Genuino 101朝上或朝下放置,并将此时传感器数据及姿态输入模式匹配引擎进行学习,此后Genuino 101即可根据新的传感器数据判断当前的姿态了。
intel Curie的模式匹配引擎(patternmatching engine),带有128个神经元,支持k近邻法(k-Nearest Neighbors)和径向基核函数(Radial Basis Function)两种匹配算法。其让Curie具有了像人一样的学习、归类能力,进而可以省去某些繁琐的编程过程。
Intel提供了CuriePME库用于驱动模式匹配引擎,其下载地址为:
下载安装CuriePME后,可通过示例程序了解其使用方法。如下示例程序可用于学习并识别手势动作。
[kenrobot_code]/*
* This example demonstrates using the pattern matching engine (CuriePME)
* to classify streams of accelerometer data from CurieIMU.
*
* First, the sketch will prompt you to draw some letters in the air (just
* imagine you are writing on an invisible whiteboard, using your board as the
* pen), and the IMU data from these motions is used as training data for the
* PME. Once training is finished, you can keep drawing letters and the PME
* will try to guess which letter you are drawing.
*
* This example requires a button to be connected to digital pin 4
* https://www.arduino.cc/en/Tutorial/Button
*
* NOTE: For best results, draw big letters, at least 1-2 feet tall.
*
* Copyright (c) 2016 Intel Corporation.  All rights reserved.
* See license notice at end of file.
*/

#include "CurieIMU.h"
#include "CuriePME.h"

/*  This controls how many times a letter must be drawn during training.
*  Any higher than 4, and you may not have enough neurons for all 26 letters
*  of the alphabet. Lower than 4 means less work for you to train a letter,
*  but the PME may have a harder time classifying that letter. */
const unsigned int trainingReps = 4;

/* Increase this to 'A-Z' if you like-- it just takes a lot longer to train */
const unsigned char trainingStart = 'A';
const unsigned char trainingEnd = 'F';

/* The input pin used to signal when a letter is being drawn- you'll
* need to make sure a button is attached to this pin */
const unsigned int buttonPin = 4;

/* Sample rate for accelerometer */
const unsigned int sampleRateHZ = 200;

/* No. of bytes that one neuron can hold */
const unsigned int vectorNumBytes = 128;

/* Number of processed samples (1 sample == accel x, y, z)
* that can fit inside a neuron */
const unsigned int samplesPerVector = (vectorNumBytes / 3);

/* This value is used to convert ASCII characters A-Z
* into decimal values 1-26, and back again. */
const unsigned int upperStart = 0x40;

const unsigned int sensorBufSize = 2048;
const int IMULow = -32768;
const int IMUHigh = 32767;

void setup()
{
    Serial.begin(9600);
    while(!Serial);

    pinMode(buttonPin, INPUT);

    /* Start the IMU (Intertial Measurement Unit) */
    CurieIMU.begin();

    /* Start the PME (Pattern Matching Engine) */
    CuriePME.begin();

    CurieIMU.setAccelerometerRate(sampleRateHZ);
    CurieIMU.setAccelerometerRange(2);

    trainLetters();
    Serial.println("Training complete. Now, draw some letters (remember to ");
    Serial.println("hold the button) and see if the PME can classify them.");
}

void loop ()
{
    byte vector[vectorNumBytes];
    unsigned int category;
    char letter;

    /* Record IMU data while button is being held, and
     * convert it to a suitable vector */
    readVectorFromIMU(vector);

    /* Use the PME to classify the vector, i.e. return a category
     * from 1-26, representing a letter from A-Z */
    category = CuriePME.classify(vector, vectorNumBytes);

    if (category == CuriePME.noMatch) {
        Serial.println("Don't recognise that one-- try again.");
    } else {
        letter = category + upperStart;
        Serial.println(letter);
    }
}

/* Simple "moving average" filter, removes low noise and other small
* anomalies, with the effect of smoothing out the data stream. */
byte getAverageSample(byte samples[], unsigned int num, unsigned int pos,
                   unsigned int step)
{
    unsigned int ret;
    unsigned int size = step * 2;

    if (pos < (step * 3) || pos > (num * 3) - (step * 3)) {
        ret = samples[pos];
    } else {
        ret = 0;
        pos -= (step * 3);
        for (unsigned int i = 0; i < size; ++i) {
            ret += samples[pos - (3 * i)];
        }

        ret /= size;
    }

    return (byte)ret;
}

/* We need to compress the stream of raw accelerometer data into 128 bytes, so
* it will fit into a neuron, while preserving as much of the original pattern
* as possible. Assuming there will typically be 1-2 seconds worth of
* accelerometer data at 200Hz, we will need to throw away over 90% of it to
* meet that goal!
*
* This is done in 2 ways:
*
* 1. Each sample consists of 3 signed 16-bit values (one each for X, Y and Z).
*    Map each 16 bit value to a range of 0-255 and pack it into a byte,
*    cutting sample size in half.
*
* 2. Undersample. If we are sampling at 200Hz and the button is held for 1.2
*    seconds, then we'll have ~240 samples. Since we know now that each
*    sample, once compressed, will occupy 3 of our neuron's 128 bytes
*    (see #1), then we know we can only fit 42 of those 240 samples into a
*    single neuron (128 / 3 = 42.666). So if we take (for example) every 5th
*    sample until we have 42, then we should cover most of the sample window
*    and have some semblance of the original pattern. */
void undersample(byte samples[], int numSamples, byte vector[])
{
    unsigned int vi = 0;
    unsigned int si = 0;
    unsigned int step = numSamples / samplesPerVector;
    unsigned int remainder = numSamples - (step * samplesPerVector);

    /* Centre sample window */
    samples += (remainder / 2) * 3;
    for (unsigned int i = 0; i < samplesPerVector; ++i) {
        for (unsigned int j = 0; j < 3; ++j) {
            vector[vi + j] = getAverageSample(samples, numSamples, si + j, step);
        }

        si += (step * 3);
        vi += 3;
    }
}

void readVectorFromIMU(byte vector[])
{
    byte accel[sensorBufSize];
    int raw[3];

    unsigned int samples = 0;
    unsigned int i = 0;

    /* Wait until button is pressed */
    while (digitalRead(buttonPin) == LOW);

    /* While button is being held... */
    while (digitalRead(buttonPin) == HIGH) {
        if (CurieIMU.accelDataReady()) {

            CurieIMU.readAccelerometer(raw[0], raw[1], raw[2]);

            /* Map raw values to 0-255 */
            accel = (byte) map(raw[0], IMULow, IMUHigh, 0, 255);
            accel[i + 1] = (byte) map(raw[1], IMULow, IMUHigh, 0, 255);
            accel[i + 2] = (byte) map(raw[2], IMULow, IMUHigh, 0, 255);

            i += 3;
            ++samples;

            /* If there's not enough room left in the buffers
            * for the next read, then we're done */
            if (i + 3 > sensorBufSize) {
                break;
            }
        }
    }

    undersample(accel, samples, vector);
}

void trainLetter(char letter, unsigned int repeat)
{
    unsigned int i = 0;

    while (i < repeat) {
        byte vector[vectorNumBytes];

        if (i) Serial.println("And again...");

        readVectorFromIMU(vector);
        CuriePME.learn(vector, vectorNumBytes, letter - upperStart);

        Serial.println("Got it!");
        delay(1000);
        ++i;
    }
}

void trainLetters()
{
    for (char i = trainingStart; i <= trainingEnd; ++i) {
        Serial.print("Hold down the button and draw the letter '");
        Serial.print(String(i) + "' in the air. Release the button as soon ");
        Serial.println("as you are done.");

        trainLetter(i, trainingReps);
        Serial.println("OK, finished with this letter.");
        delay(2000);
    }
}
[/kenrobot_code]


编译并上传以上程序到Genuino101,按串口提示,即可体验使用Genuino 101学习并识别动作。运行该示例需要在4号引脚上接一个按键模块,按下按键即会开始一次新的学习,松开按键结束该次学习。
该示例主要使用的了CuriePME中learn和classify两个函数,这也是机器学习的两个主要过程。

学习
  
uint16_t  CuriePME.learn (uint8_t vector[], int32t  vector_length, uint16_t category)
  
其中参数vector要进行学习的数据,参数vector_length为数据长度,参数category该次学习对应的分类类别。 调用learn函数,即可告知CuriePME,数据vector属于类别category。
CuriePME是由128个特殊存储单元组成的神经元网络。每个存储单元可以容纳128字节的数据。每次调用learn函数,都会将输入的新数据写入网络中的一个神经元,即CuriePME在清空重置的状态下,可以进行128次学习操作,每次用于学习的数据vector长度最大为128字节。

分类
  
uint16_t  CuriePME.classify (uint8_t vector[], int32_t  vector_length)
  
其中参数vector是要进行识别的数据,vector_length是要该数据的长度。调用classify函数,CuriePME即会判断数据vector属于哪一个别类,并返回别类对应的编号。

以上程序中,CurieIMU设定加速度采样频率200Hz,采样缓冲区2 kb,最多可以录制3.41秒的动作,再经过程序处理将2kb数据缩小到128 byte,进行学习和分类。如果需要录制更长时间的动作,可以将加速度采样频率降低,或扩大采样缓冲区。
由于实际用于学习和分类的特征数据只有128 byte,所以理论上越简单的动作,约少的录制时间,会得到更好的学习和识别效果。
CuriePME主要用来结合CurieIMU进行姿态、动作的学习和识别,但实际上也可以用于其他类型数据的处理,本书篇幅有限,不做过多论述。


-------------------------------------------------------------------------------------------------------------
本教程分为五部分:
1.配置IMU及获取数据   http://www.arduino.cn/thread-42850-1-1.html
2.解算AHRS姿态   http://www.arduino.cn/thread-42851-1-1.html
3.姿态数据可视化   http://www.arduino.cn/thread-42852-1-1.html
4.IMU中断检测   http://www.arduino.cn/thread-42853-1-1.html
5.神经元与机器学习   http://www.arduino.cn/thread-42854-1-1.html
发表于 2017-3-17 13:16 | 显示全部楼层
Arduino:1.8.1 (Windows 10), 开发板:"Arduino/Genuino 101"

C:\Users\pc\AppData\Local\Temp\arduino_modified_sketch_204514\sketch_mar17b.ino: In function 'void readVectorFromIMU(byte*)':

sketch_mar17b:150: error: 'class CurieIMUClass' has no member named 'accelDataReady'

  if (CurieIMU.accelDataReady()) {

               ^

sketch_mar17b:152: error: incompatible types in assignment of 'byte {aka unsigned char}' to 'byte [2048] {aka unsigned char [2048]}'

accel = (byte) map(raw[0], IMULow, IMUHigh, 0, 255);

       ^

exit status 1
'class CurieIMUClass' has no member named 'accelDataReady'

这是怎么回事?

点评

新版函数有变更,accelDataReady已作废,新的函数为DataReady  详情 回复 发表于 2017-3-17 15:26
 楼主| 发表于 2017-3-17 15:26 | 显示全部楼层
987621305@QQ.CO 发表于 2017-3-17 13:16
Arduino:1.8.1 (Windows 10), 开发板:"Arduino/Genuino 101"

C:%users\pc\AppData\Local\Temp\arduino_mo ...

新版函数有变更,accelDataReady已作废,新的函数为DataReady
发表于 2017-3-17 15:52 | 显示全部楼层
Arduino:1.8.1 (Windows 10), 开发板:"Arduino/Genuino 101"

E:\cz-Arduino\sketch_mar17b\sketch_mar17b.ino: In function 'void readVectorFromIMU(byte*)':

sketch_mar17b:151: error: 'class CurieIMUClass' has no member named 'DataReady'

   if(CurieIMU.DataReady()){

               ^

exit status 1
'class CurieIMUClass' has no member named 'DataReady'
还是不好使?????
发表于 2017-3-17 15:55 | 显示全部楼层
使用 1.0  版本的库 CurieIMU 在文件夹: C:\Users\pc\AppData\Local\Arduino15\packages\Intel\hardware\arc32\1.0.7\libraries\CurieIMU
使用 0.1  版本的库 Intel-Pattern-Matching-Technology-master 在文件夹: E:\cz-Arduino\libraries\Intel-Pattern-Matching-Technology-master

点评

http://www.arduino.cn/thread-42890-1-1.html  详情 回复 发表于 2017-3-17 16:49
 楼主| 发表于 2017-3-17 16:49 | 显示全部楼层
987621305@QQ.CO 发表于 2017-3-17 15:55
使用 1.0  版本的库 CurieIMU 在文件夹: C:%users\pc\AppData\Local\Arduino15\packages\Intel\hardware\a ...
更新版的扩展包才有
http://www.arduino.cn/thread-42890-1-1.html
发表于 2017-3-17 18:33 | 显示全部楼层
好使了,是CurieIMU.dataReady()。学了
发表于 2017-3-28 16:40 来自手机 | 显示全部楼层
大哥们,我全试了,都不行啊,我在文件夹里面搜索curielIMU发现有dataReady但是每次编译都会出现上述错误,好气啊。
发表于 2017-3-28 16:40 来自手机 | 显示全部楼层
在cpp文件里面看的
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|Archiver|手机版|Arduino中文社区

GMT+8, 2024-12-30 02:03 , Processed in 0.121049 second(s), 27 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表