MicroPython动手做(10)——零基础学MaixPy之神经网络KPU-Arduino中文社区 - Powered by Discuz!

Arduino中文社区

 找回密码
 立即注册

QQ登录

只需一步,快速开始

123
返回列表 发新帖
楼主: eagler8

MicroPython动手做(10)——零基础学MaixPy之神经网络KPU

[复制链接]
 楼主| 发表于 2020-4-9 12:18 | 显示全部楼层
4. 运行yolo2网络
import KPU as kpu
import image
task = kpu.load(offset or file_path)
anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025)
kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)
img = image.Image()
kpu.run_yolo2(task, img)

参数
kpu_net: kpu_load 返回的 kpu_net 对象
image_t:从 sensor 采集到的图像

返回
list: kpu_yolo2_find 的列表


5. 网络前向运算(forward)
计算已加载的网络模型到指定层数,输出目标层的特征图
import KPU as kpu
task = kpu.load(offset or file_path)
……
fmap=kpu.forward(task,img,3)

参数
kpu_net: kpu_net 对象
image_t: 从 sensor 采集到的图像
int: 指定计算到网络的第几层

返回
fmap: 特征图对象,内含当前层所有通道的特征图

 楼主| 发表于 2020-4-9 12:25 | 显示全部楼层
6. fmap 特征图
取特征图的指定通道数据到image对象
img=kpu.fmap(fmap,1)

参数
fmap: 特征图 对象
int: 指定特征图的通道号】

返回
img_t: 特征图对应通道生成的灰度图

7. fmap_free 释放特征图
释放特征图对象
kpu.fmap_free(fmap)

参数
fmap: 特征图 对象

返回


8. netinfo
获取模型的网络结构信息
info=kpu.netinfo(task)
layer0=info[0]

参数
kpu_net: kpu_net 对象

返回
netinfo list:所有层的信息list, 包含信息为:
index:当前层在网络中的层数
wi:输入宽度
hi:输入高度
wo:输出宽度
ho:输出高度
chi:输入通道数
cho:输出通道数
dw:是否为depth wise layer
kernel_type:卷积核类型,0为1x1, 1为3x3
pool_type:池化类型,0不池化; 1:2x2 max pooling; 2:...
para_size:当前层的卷积参数字节数

 楼主| 发表于 2020-4-9 13:05 | 显示全部楼层

KPU寄存器配置说明
芯片厂家没有给出寄存器手册,我们从kpu.c, kpu.h, Model Compiler中分析各寄存器定义。KPU的寄存器配置写在 kpu_layer_argument_t 结构体中,我们取standalone demo中的kpu demo中的gencode.c来分析.(https://github.com/kendryte/kend ... pu/gencode_output.c)


[mw_shl_code=arduino,true]//层参数列表,共16层kpu_layer_argument_t la[] __attribute__((aligned(128))) = {
// 第0层{
.kernel_offset.data = {
  .coef_row_offset = 0,                //固定为0
  .coef_column_offset = 0        //固定为0
},
.image_addr.data = {                //图像输入输出地址,一个在前,一个在后,下一层运算的时候翻过来,可以避免拷贝工作。
  .image_dst_addr = (uint64_t)0x6980,        //图像输出地址,int((0 if idx & 1 else (img_ram_size - img_output_size)) / 64)
  .image_src_addr = (uint64_t)0x0                //图像加载地址
},
.kernel_calc_type_cfg.data = {
  .load_act = 1,                        //使能激活函数,必须使能(硬件设计如此),不使能则输出全为0
  .active_addr = 0,                        //激活参数加载首地址,在kpu_task_init里初始化为激活折线表
  .row_switch_addr = 0x5,        //图像宽占用的单元数,一个单元64Byte.  ceil(width/64)=ceil(320/64)=5
  .channel_switch_addr = 0x4b0,                        //单通道占用的单元数.  row_switch_addr*height=5*240=1200=0x4b0
  .coef_size = 0,                        //固定为0
  .coef_group = 1                        //一次可以计算的组数,因为一个单元64字节,
                                                        //所以宽度>32,设置为1;宽度17~32,设置为2;宽度<=16,设置为4
},
.interrupt_enabe.data = {
  .depth_wise_layer = 0,        //常规卷积层,设置为0
  .ram_flag = 0,                        //固定为0
  .int_en = 0,                                //失能中断
  .full_add = 0                                //固定为0
},
.dma_parameter.data = {        //DMA传输参数
  .dma_total_byte = 307199,                //该层输出16通道,即 19200*16=308200
  .send_data_out = 0,                        //使能输出数据
  .channel_byte_num = 19199                //输出单通道的字节数,因为后面是2x2 pooling, 所以大小为160*120=19200
},
.conv_value.data = {                //卷积参数,y = (x*arg_x)>>shr_x
  .arg_x = 0x809179,                //24bit        乘法参数
  .arg_w = 0x0,
  .shr_x = 8,                                //4bit        移位参数
  .shr_w = 0
},
.conv_value2.data = {                //arg_add = kernel_size * kernel_size * bw_div_sw * bx_div_sx =3x3x?x?
  .arg_add = 0
},
.write_back_cfg.data = {        //写回配置
  .wb_row_switch_addr = 0x3,                //ceil(160/64)=3
  .wb_channel_switch_addr = 0x168,        //120*3=360=0x168
  .wb_group = 1                                                //输入行宽>32,设置为1
},
.image_size.data = {        //输入320*240,输出160*120
  .o_col_high = 0x77,
  .i_col_high = 0xef,
  .i_row_wid = 0x13f,
  .o_row_wid = 0x9f
},
.kernel_pool_type_cfg.data = {
  .bypass_conv = 0,                //硬件不能跳过卷积,固定为0
  .pad_value = 0x0,                //边界填充0
  .load_para = 1,                //硬件不能跳过归一化,固定为1
  .pad_type = 0,                //使用填充值
  .kernel_type = 1,                //3x3设置为1, 1x1设置为0
  .pool_type = 1,                //池化类型,步长为2的2x2 max pooling
  .dma_burst_size = 15,        //dma突发传送大小,16字节;脚本中固定为16
  .bwsx_base_addr = 0,        //批归一化首地址,在kpu_task_init中初始化
  .first_stride = 0                //图像高度不超过255;图像高度最大为512。
},
.image_channel_num.data = {
  .o_ch_num_coef = 0xf,        //一次性参数加载可计算的通道数,16通道。4K/单通道卷积核数
                                                //o_ch_num_coef = math.floor(weight_buffer_size / o_ch_weights_size_pad)       
  .i_ch_num = 0x2,                //输入通道,3通道 RGB
  .o_ch_num = 0xf                //输出通道,16通道
},
.kernel_load_cfg.data = {
  .load_time = 0,                //卷积加载次数,不超过72KB,只加载一次
  .para_size = 864,                //卷积参数大小864字节,864=3(RGB)*9(3x3)*2*16
  .para_start_addr = 0,        //起始地址
  .load_coor = 1                //允许加载卷积参数
}
},
   //第0层参数结束……
};

上表中还有些结构体内容没有填充,是在KPU初始化函数中填充:```kpu_task_t* kpu_task_init(kpu_task_t* task){
la[0].kernel_pool_type_cfg.data.bwsx_base_addr = (uint64_t)&bwsx_base_addr_0;        //初始化批归一化表
la[0].kernel_calc_type_cfg.data.active_addr = (uint64_t)&active_addr_0;                //初始化激活表
la[0].kernel_load_cfg.data.para_start_addr = (uint64_t)¶_start_addr_0;         //初始化参数加载
……        //共16层参数,逐层计算
task->layers = la;
task->layers_length = sizeof(la)/sizeof(la[0]);        //16层
task->eight_bit_mode = 0;                                        //16bit模式
task->output_scale = 0.12349300010531557;        //输出的缩放,偏置
task->output_bias = -13.528212547302246;
return task;
}```[/mw_shl_code]
发表于 2020-4-17 21:24 | 显示全部楼层
非常详细的学习教程,谢谢分享。
 楼主| 发表于 2020-4-18 05:20 | 显示全部楼层
topdog 发表于 2020-4-17 21:24
非常详细的学习教程,谢谢分享。

版主早上好,谢谢鼓励
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|Archiver|手机版|Arduino中文社区

GMT+8, 2024-12-27 09:33 , Processed in 0.078906 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表